连续统假设不可被证明

1874年格奥尔格·康托尔猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。它又被称为希尔伯特第一问题,在1900年第二届国际数学家大会上,大卫·希尔伯特把康托尔的连续统假设列入20世纪有待解决的23个重要数学问题之首。1938年哥德尔证明了连续统假设和世界公认的ZFC公理系统不矛盾。1963年美国数学家科亨证明连续假设和ZFC公理系统是彼此独立的。因此,连续统假设不能在ZFC公理系统内证明其正确性与否。

1938年,K.哥德尔证明了CH对ZFC公理系统(见公理集合论)是协调的,1963年,P.J.科恩证明CH对ZFC公理系统是独立的,是不可能判定真假的。这样,在ZFC公理系统中,CH是不可能判定真假的。这是60年代集合论的最大进展之一。然而到了21世纪,前人的结论又开始被动摇了。

康托尔证明连续统的基数等于自然数集幂集的基数,并把它记作2^ℵ0(其中ℵ0读作阿列夫零)。康托尔还把无穷基数按照从小到大的次序排列为ℵ0,ℵ1,…ℵa……其中a为任意序数,康托尔猜想,2^ℵ0=ℵ1。这就是著名的连续统假设(简记CH)。一般来说,对任意序数a,断定2^ℵa=ℵ(a+1)成立,就称为广义连续统假设(简记GCH)。在ZF中,CH和选择公理(简记AC)是互相独立的,但是由GCH可以推出AC。ZF加上可构造性公理(简记V=L)就可以推出GCH,当然也能推出CH和AC。